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John Hoffman (c) 2017

cuvarbase is a Python library that uses PyCUDA to implement several time series tools used in astronomy on
GPUs.

See the documentation.
This project is under active development, and currently includes implementations of

* Generalized Lomb Scargle periodogram

* Box-least squares (BLS )

* Non-equispaced fast Fourier transform (adjoint operation) (NFFT paper)

* Conditional entropy period finder (CE)

¢ Phase dispersion minimization (PDM2)

— Currently operational but minimal unit testing or documentation (yet)

Hopefully future developments will have

* (Weighted) wavelet transforms

* Spectrograms (for PDM and GLS)

¢ Multiharmonic extensions for GLS

Contents: 1


https://badge.fury.io/py/cuvarbase
https://mathema.tician.de/software/pycuda/
https://johnh2o2.github.io/cuvarbase/
https://arxiv.org/abs/0901.2573
http://adsabs.harvard.edu/abs/2002A%26A...391..369K
http://epubs.siam.org/doi/abs/10.1137/0914081
http://adsabs.harvard.edu/abs/2013MNRAS.434.2629G
http://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=29
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2 Contents:



CHAPTER 1

Dependencies

PyCUDA <-essential
scikit cuda <-also essential
— used for access to the CUDA FFT runtime library
matplotlib (for plotting utilities)
nfft (for unit testing)

astropy (for unit testing)



https://mathema.tician.de/software/pycuda/
https://scikit-cuda.readthedocs.io/en/latest/
https://matplotlib.org/
https://github.com/jakevdp/nfft
http://www.astropy.org/
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CHAPTER 2

Using multiple GPUs

If you have more than one GPU, you can choose which one to use in a given script by setting the CUDA_DEVICE
environment variable:

CUDA_DEVICE=1 python script.py

If anyone is interested in implementing multi-device load-balancing solution, they are encouraged to do so! At some
point this may become important, but for the time being manually splitting up the jobs to different GPU’s will have to
suffice.

2.1 What’s new in cuvarbase

* 0.24

— bugfix for pytest (broke b/c of incorrect fixture usage)

— added ignore_negative_delta_sols option to BLS to ignore inverted dips in the lightcurve
* 0.2.1

— bugfix for memory leak in BLS

— contact email changed in setup
* 0.2.0

Many more unit tests for BLS and CE.
- BLS

+* Now several orders of magnitude faster! Use use_fast=True in eebls_transit_gpu
oruse eebls_gpu_fast.

+ Bug-fix for boost-python error when calling eebls_gpu_fast.
- CE
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* 0.1.9
- CE
- GLS
- BLS

* 0.1.8

* 0.1.6/0.1.7

* 0.1.5

* New use_fast parameter in ConditionalEntropyAsyncProcess; if selected will

use a kernel that should be substantially more efficient and that requires no memory overhead.
If selected, you should use the run function and not the 1arge_run function. Currently the
weighted option is not supported when use_fast is True.

# Bug-fix for mag_overlap > 0.

Added Sphinx documentation

Now Python 3 compatible!

Miscillaneous bug fixes

Run functions for ConditionalEntropyAsyncProcess now allow for a
balanced_magbins argument to set the magnitude bins to have widths that vary
with the distribution of magnitude values. This is more robust to outliers, but performance
comparisons between the usual CE algorithm indicate that you should use care.

Added precompute functionto ConditionalEntropyAsyncProcess that allows you
to speed up computations without resorting to the bat ched_run_constant_nfreq func-
tion. Currently it still assumes that the frequencies used will be the same for all lightcurves.

Added precompute function to LombScargleAsyncProcess.
Avoids allocating GPU memory for NFFT when use_fft isFalse.

LombScargleAsyncProcess.memory_requirement is now implemented.

eebls_gpu, eebls_transit_gpu, and eebls_custom_gpu now have a
max_memory option that allows you to automatically set the batch_size without
worrying about memory allocation errors.

eebls_transit_gpu now allows for a fregs argument and a gvals argument for cus-
tomizing the frequencies and the fiducial g values

Fixed a small bug in fmin_transit that miscalculated the minimum frequency.

— Removed gamma function usage from baluev 2008 false alarm probability (use_gamma=True will
override this)

— Fixed a bug in the GLS notebook

Some bug fixes for GLS

large_run function for Conditional Entropy period finder allows large frequency grids without
raising memory allocation errors.

More unit tests for conditional entropy

Conditional entropy now supports double precision with the use_double argument

Conditional Entropy period finder now unit tested

Chapter 2. Using multiple GPUs
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+ Weighted variant also implemented — accounts for heteroskedasticity if that’s important
- BLS
* New unit tests
+ A new transiting exoplanet BLS function: eebls_transit_gpu
- Only searches plausible parameter space for Keplerian orbit
- GLS
+ False alarm probability: fap_baluev

- Implements Baluev 2008 false alarm probability measure based on extreme value theory

2.2 Install instructions

These installation instructions are for Linux/BSD-based systems (OS X/macOS, Ubuntu, etc.). Windows users, your
suggestions and feedback is welcome if we can make your life easier!

2.2.1 Installing the Nvidia Toolkit

cuvarbase requires PyCUDA and scikit-cuda, which both require the Nvidia toolkit for access to the Nvidia com-
piler, drivers, and runtime libraries.

Go to the NVIDIA Download page and select the distribution for your operating system. Everything has been devel-
oped and tested using version 8.0, so it may be best to stick with that version for now until we verify that later versions
are OK.

Warning: Make sure that your $PATH environment variable contains the location of the CUDA binaries. You can
test this by trying which nvcc from your terminal. If nothing is printed, you’ll have to amend your ~/ . bashrc
file:

echo "export PATH=/usr/local/cuda/bin:${PATH}" >> ~/.bashrc && . ~/.bashrc

The >> is not a typo — using one > will overwrite the ~/ .bashrc file. Make sure you change /usr/local/
cuda to the appropriate location of your Nvidia install.

Also important

Make sure your $SLD_LIBRARY_PATH and $DYLD_LIBRARY_PATH are also similarly modified to include the
/ 1ib directory of the CUDA install:

echo "export LD_LIBRARY_ PATH=/usr/local/cuda/lib:${LD_LIBRARY_PATH}" >>
~/.bashrc && . ~/.bashrc echo "export DYLD_LIBRARY_PATH=/usr/local/cuda/
1ib:${DYLD_LIBRARY PATH}" >> ~/.bashrc && . ~/.bashrc

2.2.2 Using conda

Conda is a great way to do this in a safe, isolated environment.

First create a new conda environment (named pycu here) that will use Python 2.7 (python 2.7, 3.4, 3.5, and 3.6 have
been tested), with the numpy library installed.

2.2. Install instructions 7
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conda create —n pycu python=2.7 numpy

Note: The numpy library has to be installed before PyCUDA is installed with pip. The PyCUDA setup needs to be
able to access the numpy library for building against it. You can do this with the above command, or alternatively just
dopip install numpy && pip install cuvarbase

Then activate the virtual environment

source activate pycu ‘

and then use pip to install cuvarbase

’pip install cuvarbase ‘

2.2.3 Installing with just pip

If you don’t want to use conda the following should work with just pip

pip install numpy
pip install cuvarbase

2.2.4 Troubleshooting PyCUDA installation problems

The PyCUDA installation step may be a hiccup in this otherwise orderly process. If you run into problems installing
PyCUDA with pip, you may have to install PyCUDA from source yourself. It’s not too bad, but if you experience any
problems, please submit an Issue at the cuvarbase Github page and I'll amend this documentation.

Below is a small bash script that (hopefully) automates the process of installing PyCUDA in the event of any problems
you’ve encountered at this point.

PYCUDA="pycuda—-2017.1.1"

PYCUDA_URL="https://pypi.python.org/packages/b3/30/
—9elc0adcl0e90bdc59ca7aal3cb18e96f37aabcac73ffe6b5d9658f6ef843/pycuda-2017.1.1.tar.gz
—#md5=9e509£53a23e062b31049eb8220b2e3d"

CUDA_ROOT=/usr/local/cuda

# Download
wget SPYCUDA_URL

# Unpack
tar xvf PYCUDA}.tar.gz
cd SPYCUDA

# Configure with current python exe

./configure.py —--python-exe= which python  --cuda-root=SCUDA_ROOT
python setup.py build

python setup.py install

If everything goes smoothly, you should now test if pycuda is working correctly.

python -c "import pycuda.autoinit; print 'Hurray!'"

If everything works up until now, we should be ready to install cuvarbase

8 Chapter 2. Using multiple GPUs
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pip install cuvarbase

2.2.5 Installing from source

You can also install directly from the repository. Clone the git repository on your machine:

git clone https://github.com/johnh202/cuvarbase

Then install!

cd cuvarbase
python setup.py install

The last command can also be done with pip:

pip install -e .

2.2.6 Troubleshooting on a Mac

Nvidia offers CUDA for Mac OSX. After installing the package via downloading and running the . dmg file, you’ll
have to make a couple of edits to your ~/ .bash_profile:

export DYLD_LIBRARY_PATH="S$ :/usr/local/cuda/lib"
export PATH="/usr/local/cuda/bin:$ "

and then source these changes in your current shell by running . ~/.bash_profile.

Another important note: nvee (8.0.61) does not appear to support the latest clang compiler. If this is the case,
running python example.py should produce the following error:

nvce fatal : The version ('80100') of the host compiler ('Apple clang') is not
—supported

You can fix this problem by temporarily downgrading your clang compiler. To do this:
* Download Xcode command line tools 7.3.1
¢ Install.

* Run sudo xcode-select —--switch /Library/Developer/CommandLineTools until clang
—-versionsays 7. 3.

2.3 Conditional Entropy

The conditional entropy period finder [G2013] phase-folds the data at each trial frequencies and estimates the condi-
tional entropy H (m|¢) of the data. The idea is that the data with the least entropy (intuitively: the greatest “structure”
or “non-randomness”), should correspond to the correct frequency of a stationary signal.

Here,

p(pfi%) )

where p(m, ¢) is the density of points that fall within the bin located at phase ¢ and magnitude m and p(¢) =
> m P(m, @) is the density of points that fall within the phi range.

H(nlg) = H(m,9) ~ H(6) = Y- plm. ) 1o
m,¢
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2.3.1 An example with cuvarbase

import cuvarbase.ce as ce
import numpy as np

# make some fake data

t = np.sort (np.random.rand(100))
y = np.cos(2 * np.pi » 10 % t)

y += np.random.randn (len(t))

dy = np.ones_like (t)

# start a conditional entropy process
proc = ConditionalEntropyAsyncProcess (phase_bins=10, mag_bins=5)

# format your data as a list of lightcurves (t, y, dy)
data = [(t, y, dy)]

# run the CE process with your data
results = proc.run(data)

# finish the process (probably not necessary but ensures
# all data has been transferred)
proc.finish ()

# Results is a list of [(freqs, CE), ...] for each lightcurve
# in " data’’
freqgs, ce_spectrum = results[0]

If you want to run CE on large datasets, you can do

proc.large_run(data, max_memory=1e9)

instead of run, which will ensure that the memory limit (I GB in this case) is not exceeded on the GPU (unless of
course you have other processes running).

2.4 Lomb-Scargle periodogram

The Lomb-Scargle periodogram ([Barning1963], [Vanicek1969], [Scargle1982], [Lomb1976]) is one of the best
known and most popular period finding algorithms used in astrononomy. If you would like to learn more about
least-squares methods for periodic signals, see the review article by [VanderPlas2017].

The LS periodogram is a least-squares estimator for the following model
J(tlw,0) = 01 coswt + O sinwt
and it is equivalent to the Discrete Fourier Transform in the regularly-sampled limit. For irregularly sampled data, LS

is a maximum likelihood estimator for the parameters 6 in the case where the noise is Gaussian. The periodogram has
many normalizations in the literature, but cuvarbase adopts

where
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is the goodness-of-fit statistic for the optimal parameters 6 and
vi— 9\
2 i
=3 (420
i g

is the goodness-of-fit statistic for a constant fit, and ¥ is the weighted mean,
y= Z wiYi
i

where w; < 1/0? and >, w; = 1.

The closed form of the periodogram is given by

Where
YC,. = Z w;y; cosw(t; — T)

K2

YS, = Z w;y; sinw(t; — 7)

K3

CcC, = Zwi cos? w(t; — )
SS; = Zwi sin? w(t; — 7)

>, wisin 2wt;

tan 2wt =
>, w;sin 2wt;

For the original formulation of the Lomb-Scargle periodogram without the constant offset term.

2.4.1 Adding a constant offset

Lomb-Scargle can be extended in many ways, most commonly to include a constant offset [ZK2009].
98 (t|w, 0) = 01 coswt + Oy sinwt + b5

This protects against cases where the mean of the data does not correspond with the mean of the underlying signal, as
is usually the case with sparsely sampled data or for signals with large amplitudes that become too bright or dim to be
observed during part of the signal phase.

With the constant offset term, the closed-form solution to P(w) is the same, but the terms are slightly different.
Derivations of this are in [ZK2009].

2.4.2 Getting O(N log N) performance

The secret to Lomb-Scargle’s speed lies in the fact that computing it requires evaluating sums that, for regularly-spaced
data, can be evaluated with the fast Fourier transform (FFT), which scales as O(Ny log Nt) where N is the number
of frequencies. For irregularly spaced data, however, we can employ tricks to get to this scaling.

2.4. Lomb-Scargle periodogram 11
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1. We can “extirpolate” the data with Legendre polynomials to a regular grid and then perform the FFT
[PressRybickil989], or,

2. We can use the non-equispaced fast Fourier transform (NFFT) [DuttRokhlin1993], which is tailor made for this
exact problem.

The latter was shown by [Leroy2012] to give roughly an order-of-magnitude speed improvement over the
[PressRybicki1989] method, with the added benefit that the NFFT is a rigorous extension of the FFT and has proven
error bounds.

It’s worth mentioning the [Townsend2010] CUDA implementation of Lomb-Scargle, however this uses the
O(NobsNy) “naive” implementation of LS without any FFT’s.

2.4.3 Estimating significance

See [Baluev2008] for more information (TODO.)

2.4.4 Example: Basic

import skcuda.fft

import cuvarbase.lombscargle as gls
import numpy as np

import matplotlib.pyplot as plt

t = np.sort (np.random.rand(300))

y =1 + np.cos(2 « np.pi ~ 100 » £t - 0.1)
dy = 0.1 % np.ones_like(y)

y += dy * np.random.randn(len(t))

# Set up LombScargleAsyncProcess (compilation, etc.)
proc = gls.LombScargleAsyncProcess ()

# Run on single lightcurve
result = proc.run([(t, vy, dy)])

# Synchronize all cuda streams
proc.finish ()

# Read result!
fregs, ls_power = result[0]

#HHAHAAHAFAA
# Plotting #
#HA#AAEAFAAE

f, ax = plt.subplots()
ax.set_xscale('log')

ax.plot (fregs, ls_power)
ax.set_xlabel ('Frequency')
ax.set_ylabel ('Lomb-Scargle')
plt.show ()
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2.4.5 Example: Batches of lightcurves

import skcuda.fft

import cuvarbase.lombscargle as gls
import numpy as np

import matplotlib.pyplot as plt

nlcs = 9

def lightcurve (fregq=100, ndata=300):
t = np.sort (np.random.rand (ndata))
y = 1 + np.cos(2 « np.pi ~ freg » t - 0.1)
dy = 0.1 » np.ones_like(y)
y += dy * np.random.randn (len(t))
return t, y, dy

fregs = 200 % np.random.rand(nlcs)
data = [lightcurve (freg=freq) for freq in fregs]

# Set up LombScargleAsyncProcess (compilation, etc.)
proc = gls.LombScargleAsyncProcess ()

# Run on batch of lightcurves
results = proc.batched_run_const_nfreqg(data)

# Synchronize all cuda streams
proc.finish ()

#HAAHAAEHAAAA
# Plotting #
#HAAHFAAHAAHA
max_n_cols = 4
ncols = max([1l, min([int (np.sgrt(nlcs)), max_n_cols])])
nrows = int(np.ceil (float (nlcs) / ncols))
f, axes = plt.subplots(nrows, ncols,
figsize=(3 % ncols, 3 * nrows))

for (frgs, ls_power), ax, freq in zip(results,
np.ravel (axes),

fregs):
ax.set_xscale('log'")
ax.plot (frgs, ls_power)
ax.axvline (freq, 1ls=':', color='r")

f.text (0.05, 0.5, "Lomb-Scargle", rotation=90,
va='center', ha='right', fontsize=20)
f.text (0.5, 0.05, "Frequency",
va='top', ha='center', fontsize=20)

for i, ax in enumerate (np.ravel (axes)):
if i >= nlcs:
ax.axis('off'")
f.tight_layout ()
f.subplots_adjust (left=0.1, bottom=0.1)
plt.show ()

2.4. Lomb-Scargle periodogram
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2.5 Box least squares (BLS) periodogram

The box-least squares periodogram [BLS] searches for the periodic dips in brightness that occur when, e.g., a planet
passes in front of its host star. The algorithm fits a boxcar function to the data. The parameters used are

* g: the transit duration as a fraction of the period t¢,ans/ P
e phi0: the phase offset of the transit (from 0)
* delta: the difference between the out-of-transit brightness and the brightness during transit

¢ y0: The out-of-transit brightness

2.5.1 Using cuvarbase BLS

import cuvarbase.bls as bls
import numpy as np
import matplotlib.pyplot as plt

def phase(t, freq, phi0=0.):
phi = (¢t » freg - phi0)
phi —= np.floor (phi)

return phi

def transit_model(t, freq, y0=0.0, delta=1., g=0.01, phi0=0.5):
phi = phase(t, freq, phiO=phi0)
transit = phi < g

y = y0 * np.ones_like (t)
y[transit] -= delta
return y

def data(ndata=100, baseline=1, freg=10, sigma=1., +**kwargs):
t = baseline * np.sort (np.random.rand (ndata))
y = transit_model (t, freq, xxkwargs)
dy = sigma * np.ones_like(t)

y += dy * np.random.randn(len(t))
return t, y, dy

def plot_bls_model (ax, y0, delta, g, phi0, =xxkwargs):
phi_plot = np.linspace(0, 1, 50./q)
y_plot = transit_model (phi_plot, 1., yO0=yO0,

delta=delta, g=q, phiO=phi0)

ax.plot (phi_plot, y_plot, =xxkwargs)

def plot_bls_sol(ax, t, y, dy, freq, g, phiO, xxkwargs):

w = np.power (dy, —2)
w /= sum(w)

(continues on next page)
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(continued from previous page)

phi = phase (t, phi0=phi0)

transit = phi < g

freq,

def ybar (mask) :

return np.dot (w[mask], y[mask])
y0 = ybar (~transit)
delta = y0 - ybar(transit)

ax.scatter ((phi[~transit] + phi0O) % 1.0,

c='k'"', s=1, alpha=0.5)
ax.scatter ((phi[transit] + phi0O) % 1.0, yl[transit],
c='r', s=1, alpha=0.5)
plot_bls_model (ax, y0, delta, g, phi0O, =*xkwargs)
ax.set_x1im(0, 1)
ax.set_xlabel ('$\phi$ (S$Sf = 2.371$)" % (freq))

ax.set_ylabel ('Sy$")

# set the transit parameters

transit_kwargs = dict (freg=0.1,
ag=0.1,
y0=10.,
sigma=0.002,
delta=0.05,
prhi0=0.5)

# generate data with a transit

t, y, dy = data(ndata=300,
baseline=365.,
~*+transit_kwargs)

# set up search parameters
search_params = dict (gmin=le-2,
amax=0.5,

# The logarithmic spacing of g

dlogg=0.1,

# Number of overlapping phase bins
# to use for finding the best phi0

noverlap=3)

# derive baseline from the data for consistency
baseline = max(t) — min(t)
# df ~ gmin / baseline

df = search_params|['gmin'] / baseline

fmin = 2. / baseline
fmax = 2.
nf = int(np.ceil ((fmax - fmin) / df))

fregs = fmin + df * np.arange (nf)

sols = bls.eebls_gpul(t, vy, dy, fregs,
**xsearch_params)

bls_power,

/ sum(w[mask])

y[~transit],

(continues on next page)
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(continued from previous page)

# best BLS fit
g _best, phiO_best = sols[np.argmax (bls_power) ]
f_best = fregs[np.argmax (bls_power) ]

# Plot results
f, (ax_bls, ax_true, ax_best) = plt.subplots(l, 3, figsize=(9, 3))

# Periodogram
ax_bls.plot (fregs, bls_power)
ax_bls.axvline (transit_kwargs|['freqg'],
ls=':", color='k', label="S$f 0S5")
ax_bls.axvline (f_best, 1ls=':', color='r"',
label="'BLS S$f {\\rm best}$'")
ax_bls.set_xlabel ('freqg."')
ax_bls.set_ylabel ('BLS power')

# True solution

plot_bls_sol (ax_true, t, vy, dy,
transit_kwargs|['freqg'],
transit_kwargs['q'],
transit_kwargs|['phi0'])

# Best—-fit solution
plot_bls_sol (ax_best, t, vy, dy,
f_best, g_best, philO_best)

ax_true.set_title("True parameters")
ax_best.set_title("Best BLS parameters")

f.tight_layout ()
plt.show ()

2.5.2 A shortcut: assuming orbital mechanics

If you assume R, < R,, M, < M,, L, < L,, and e < 1, where e is the ellipticity of the planetary orbit, L is the
luminosity, R is the radius, and M mass, you can eliminate a free parameter.
This is because the orbital period obeys Kepler’s third law,
P2 o 472a3
G(M, + M)

The angle of the transit is

0 = 2arcsin <RP+R*>
a

and ¢ is therefore 6/(27). Thus we have a relation between ¢ and the period P

472 1/3
Sil’l’ﬂ'q = (Rp + R*) <I‘JQC¥(]\4P—|—]W*))

16 Chapter 2. Using multiple GPUs
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By incorporating the fact that

3
4T Py

1/3
*

()"

where p, is the average stellar density of the host star, we can write

1/3
( ) P72/3

(I+7)
Trm7

3
Gpx

sinmg =

where r = R,/ R, and m = M,,/M,. We can get rid of the constant factors and convert this to more intuitive units to

obtain

P

Px -
day

Po

14r— 24 .

sin g = 0.238( 3

)"

where here we’ve expanded (1 + 7)/(1 4+ m)*/? to first order in 7~ and m.

2.5.3 Using the Keplerian assumption in cuvarbase

import cuvarbase.bls as bls
import numpy as np
import matplotlib.pyplot as plt

def phase(t, freq, phi0=0.):
phi (t » freqg — phi0)
phi —= np.floor (phi)

return phi

def transit_model (t,
phi phase (t, freq,

transit phi < g

freq, y0=0.0,
phi0O=phiO0)

delta=1., g=0.01, phi0=0.5):

y0 » np.ones_like (t)
delta

Yy
y[transit]
return y

def data(ndata=100,

t

y
dy

baseline=1, freg=10,
= baseline * np.sort (np.random.rand(ndata))
transit_model (t, freq, =*+kwargs)

sigma * np.ones_like(t)

sigma=1., *xkwargs):

y += dy * np.random.randn(len(t))

return t, y, dy

def plot_bls_model (ax, y0, delta, g, phi0O, =xxkwargs):
phi_plot = np.linspace (0, 1, 50./q)
y_plot = transit_model (phi_plot, 1., y0=yO0,
delta=delta, g=q, phiO=phi0)

(continues on next page)
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ax.plot (phi_plot, y_plot, =xxkwargs)
def plot_bls_sol(ax, t, vy, dy, freq, g, phi0O, *xkwargs):

w = np.power (dy, -2)

w /= sum(w)

phi = phase(t, freq, phiO=phi0)

transit = phi < g

def ybar (mask) :

return np.dot (w[mask], yl[mask]) / sum(w[mask])

y0 = ybar (~transit)

delta = y0 - ybar(transit)

ax.scatter ((phi[~transit] + phi0O) % 1.0, yl[~transit],
c='k'"', s=1, alpha=0.5)

ax.scatter ((phi[transit] + phiO) % 1.0, yl[transit],
c='r', s=1, alpha=0.5)

plot_bls_model (ax, y0, delta, g, phi0O, =*xkwargs)

ax.set_x1im(0, 1)

ax.set_xlabel ('$\phi$ (Sf = 2.371$)" % (freq))

ax.set_ylabel ('SyS")

# the mean density of the host star in solar units

rho rho_star / rho_sun

1.

# i.e.
rho

# set the transit parameters

transit_kwargs dict (freg=2.,
g=bls.qg_transit (2.,
y0=10.,
sigma=0.005,
delta=0.01,
phi0=0.5)

rho=rho),

# generate data with a transit

t, y, dy data (ndata=300,
baseline=365.,
**xtransit_kwargs)

# set up search parameters
search_params dict (

(g0 * gmin_fac,
where q0 q0 (£,

#
#
#
#
# star with mean density rho
agmin_fac=0.5,

gmax_fac=2.0,

Searches g values in the range
g0 * gmax_fac)
rho) is the fiducial
q value for Keplerian transit around

# Assumed mean stellar density

rho=1.0,

# The min/max frequencies as a fraction

(continues on next page)

2.5. Box least squares (BLS) periodogram

19




cuvarbase Documentation, Release 0.2.4

(continued from previous page)

# of their autoset values
fmin_fac=1.0,
fmax_fac=1.5,

# oversampling factor; frequency spacing
# is multiplied by 1/samples_per_peak
samples_per_peak=2,

# The logarithmic spacing of g
dlogg=0.1,

# Number of overlapping phase bins
# to use for finding the best phi0
noverlap=3)

# Run keplerian BLS; frequencies are automatically set!
freqgs, bls_power, sols = bls.eebls_transit_gpu(t, y, dy,
*+xsearch_params)

# best BLS fit
g _best, phiO_best = sols[np.argmax (bls_power) ]
f_best = fregs|[np.argmax(bls_power) ]

# Plot results
f, (ax_bls, ax_true, ax_best) = plt.subplots(l, 3, figsize=(9, 3))

# Periodogram
ax_bls.plot (fregs, bls_power)
ax_bls.axvline (transit_kwargs|['freqg'],
ls="':", color='k', label="S$f_0S5")
ax_bls.axvline (f_best, 1ls=':', color='r"',
label="BLS S$f_{\\rm best}s")
ax_bls.set_xlabel ('freqg.")
ax_bls.set_ylabel ('BLS power')
ax_bls.set_xscale('log'")

# True solution
label_true = '$Sg=%.37S$, ' % (transit_kwargs['qg'])
label_true += 'S$\\phi_0=%.37S$' % (transit_kwargs['phi0O'])
plot_bls_sol (ax_true, t, vy, dy,

transit_kwargs|['freqg'],

transit_kwargs['q'],

transit_kwargs|['phiO'],

label=1label_true)
ax_true.legend(loc="best')

label_best = 'Sg=%.37S$, ' % (g_best)
label_best += 'S$\\phi_0=%.37S$" % (phi0O_best)
# Best—-fit solution
plot_bls_sol (ax_best, t, y, dy,
f_best, g _best, phiO_best,
label=label_best)
ax_best.legend(loc="best')

ax_true.set_title("True parameters")
ax_best.set_title("Best BLS parameters")

(continues on next page)
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f.tight_layout ()
plt.show ()

2.5.4 Period spacing considerations
The frequency spacing ¢ f needed to resolve a BLS signal with width ¢, is

0f S

Nl=

where T is the baseline of the observations (I' = max(t) — min(¢)). This can be especially problematic if no
assumptions are made about the nature of the signal (e.g., a Keplerian assumption). If you want to resolve a transit
signal with a few observations, the minimum ¢ value that you would need to search is o< 1/N where N is the number
of observations.

For a typical Lomb-Scargle periodogram, the frequency spacing is 6 f < 1/7, so running a BLS spectrum with an
adequate frequency spacing over the same frequency range requires a factor of O(IN') more trial frequencies, each of
which requiring O(N) computations to estimate the best fit BLS parameters. That means that BLS scales as O(N?Ny)
while Lomb-Scargle only scales as O(Ny log Ny)

However, if you can use the assumption that the transit is caused by an edge-on transit of a circularly orbiting planet,
we not only eliminate a degree of freedom, but (assuming sin 7q ~ mq)

§f o qox f23

The minimum frequency you could hope to measure a transit period would be fii, =~ 2/7, and the maximum
frequency is determined by sin mq < 1 which implies

3r m D
maz = 8.612 c/d 1——4+—=—... | /—
d ol ayx( 2+2 ) PO

For a 10 year baseline, this translates to 2.7 x 10° trial frequencies. The number of trial frequencies needed to perform
Lomb-Scargle over this frequency range is only about 3.1 x 10%, so 8-10 times less. However, if we were to search the
entire range of possible ¢ values at each trial frequency instead of making a Keplerian assumption, we would instead
require 5.35 x 102 trial frequencies, so the Keplerian assumption reduces the number of frequencies by over 1,000.

2.6 APl documentation

2.6.1 cuvarbase package

Subpackages

cuvarbase.tests package
Submodules
cuvarbase.tests.test_bls module

cuvarbase.tests.test_ce module
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cuvarbase.tests.test lombscargle module
cuvarbase.tests.test_nfft module
cuvarbase.tests.test_ pdm module
Module contents

Submodules

cuvarbase.bls module
cuvarbase.ce module
cuvarbase.core module
cuvarbase.cunfft module
cuvarbase.lombscargle module
cuvarbase.pdm module
cuvarbase.utils module

Module contents
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Indices and tables

* genindex
* modindex

e search
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